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EVALUATION OF THE NEAR-WALL K-6 TURBULENCE
MODEL BY COMPARISON WITH DIRECT SIMULATIONS OF

TURBULENT CHANNEL FLOW

I. INTRODUCTION

During the past three decades the fluid dynamics community has focused much of
its attention on the development of techniques and capabilities for the calculation of
turbulent flow fields. Increases in available computational capabilities have permitted
researchers to develop and test increasingly sophisticated and complete models for the
numerical simulation of turbulent flows. The state of the art has reached a point
where direct numerical simulations of turbulent flows at low-to-moderate Reynolds
numbers are feasible. Such work has been reported in several studies including those by
Kim, Moin and Moser (1987) and Handler, Hendricks and Leighton (1989), hereinafter
referred to as KMM and HHL, respectively. In these simulations, the unsteady Navier-
Stokes equations are solved numerically. All essential scales of the turbulent flow are
resolved and no subgrid modeling of the turbulence is employed. Such calculations,
however, are feasible only for research purposes, and calculations of turbulent flows for
engineering purposes utilize the time-averaged Navier-Stokes equations coupled with
some level of turbulence modeling.

For many applications, the model of choice is the two equation k - , model. This
model for turbulence transport came into use in the early 1970's based largely on the
work of Hanjali6 and Launder (1972) and Launder, Reece and Rodi (1975) and became
a standard because of its relative simplicity and success in providing good predictions
for a large range of turbulent flows. In spite of some significant shortcomings in the
k - c model, it still retains a position as the standard for comparison.

Manuscript approved May 1. 1989.
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In the development of the k - E model, attention was focused on high Reynolds
number flows, such as thin shear layers, and the constants in the model were chosen to
give agreement with experimental data. Consequently, the predictive capabilities of the
model are best for strongly turbulent flows. For flows near fixed surfaces, adjustments
to the model are needed. In Hanjali6 and Launder (1972) and Launder, Reece and Rodi
(1975), boundary layer flows were treated by matching the high Reynolds number flow
with wall functions, e.g. "law-of-the-wall" profiles, at the first grid point away from the
wall. In that way, the model did not have to be directly modified for the low Reynolds
number flow adjacent to the wall. In work since then, Hanjali6 and Launder (1976) and
a number of researchers have proposed extensions to the basic high Reynolds number
model that would enable the k - e model to be directly used all the way to the wall.
Patel, Rodi and Scheuerer (1985) review a number of near-wall models and found that
while the better ones did quite well, there were still areas where improvement was
needed. One of the limitations in the development of near-wall models has been the
difficulty in making accurate and reliable measurements of the flow quantities near the
wall and the fact that some of the correlations that are needed in improving the k -
model cannot be obtained experimentally.

Data from direct numerical simulations of turbulent flows can be used in place
of experimental data in evaluating and improving the near-wall turbulence models.
Mansour, Kim and Moin (1988) have used the data of Kim, Moin and Moser (1987) to
analyze some of the terms in the modeled transport equations for the Reynolds stresses.
In this study, we use the direct simulation data of Handler, Hendricks and Leighton
(1989) to examine the terms in the k - e model with emphasis on the behavior of the
terms near the wall.

II. DIRECT NUMERICAL SIMULATION

Numerical methods are being developed at the U. S. Naval Research Laboratory
(NRL) for the direct numerical simulation (DNS) of turbulent flows. Much of the
background for this effort is provided in the study by HHL. In their report, HHL
review the numerical methods which are currently in vogue and present the results
of applying these methods to the computation of turbulent channel flows. Several
calculations parameterized by the extent of the physical domain, grid resolution, and
Reynolds number are described. In this study, we use the Chanl.1 data of HHL. This
is one of their lower resolution (spatial) data sets; however, it is one for which complete
velocity and pressure are available at widely spaced time intervals, thus insuring that
the separate realizations are statistically independent.
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In units of channel half-width, h. tho channel dimensions are 2 x 5 x 5 in the
vertical (X2), the streamwise (xi) and lateral (X3) directions respectively. The flow is
computed with 16 x 64 evenly spaced grid points in the horizontal (XI - X3 ) plane and
33 points with Chebyshev scaling are used in the X2 direction. The Reynolds number,
Re, is 2215 based on h and U0, the initial laminar centerline velocity. The governing
equations are nondimensionalized by the wall shear velocity, a viscous length unit and
a viscous time unit. The wall shear velocity, ur, is given by

[V21,. 
1. 12

The viscous length unit (or wall unit) is l, = v/u,. and the viscous time unit is tv =
v/u'. In the nondimensionalized units, the Reynolds number based on the wall shear
velocity is 125. This is lower than the wali Reynolds number of 180 for the KMM data
and the grid resolution of the Chan 1.1 data is lower. HHL conclude, however, that
the mean statistics of their data set compare well with experiment and with the more
highly resolved data of KMM insofar as one-point statistics are concerned.

The equations are solved using a pseudospectral method in which Chebyshev ex-
pansion is used in the wall normal (X2 ) direction and Fourier series are used in the
streamwise (xi) and spanwise (x 3 ) directions. The domain size in wall units is 640,
250 and 640 in the Zi, X2 and X3 directions, respectively. In the X2 direction, the use
of Chebyshev polynomials gives a variable step size, with AX2 ;z 0.6 at the wall and
Ax 2 - 12 at the channel center. In the xl and X3 directions the step size is uniform
and is Ax, - 40 and AX3 ' 10. In the direct numerical simulation used in the present
work, there are 33 distinct realizations of the velocity and pressure fields which are
separated by 50 viscous time units. This separation in time is sufficient to insure that
each realization of the fields is statistically independent.

We denote the instantaneous values of variables by uppercase symbols, the time
averaged values with an overbar, and the fluctuations from the time averages by low-
ercase symbols so that, for example,

Ui(t) = U + ui(t) and P(t) = P + p(t).
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Also, we denote the turbulence intensities as u = V '2. The velocity field in the
channel is periodic in the x, and X3 directions so that averaging over the xi - X3 plane
at each value of X2 gives dependent variable profiles which are functions of the wall
normal coordinate (X2 ). Averages are obtained by summing the individual profiles
over 33 separate realizations. Correlations of the fluctuating variables such as u Iu2 are
computed by forming the product at each grid point in the domain, averaging over the
X1 - X3 plane, and then averaging over the 33 realizations.

The primary averaged data from the direct numerical simulation of channel flow
by HHL are shown in Figs. 1 and 2. Figure 1 shows the mean streamwise velocity U1

and the root mean square of the pressure fluctuations p'. The velocity profile shows a
fully developed turbulent flow profile with channel center value of 17. The rms of the
pressure fluctuations show peaks of 1.9 at y/h = ±100. At the channel center, p' has a
minimum value less that 1.0. The values at the walls are between 1.2 and 1.3. The wall
values are lower than those reported by KMM (1.5), and the difference is attributable
to the lower Reynolds number of the HHL simulation. Figure 2 shows the turbulence
intensities, u', u' and u', and the Reynolds shear stress, Uiu2. It is noted by HHL
that the location of the peak values of u, are in excellent agreement with the data of
KMM and experimental data, although the peak values are slightly lower. The overall
agreement between the HHL data and KMM data is good. The Reynolds shear stress,
ulu 2 , shows peak values of ±0.65 at y/h = ±95 and linear variation over the interval
-85 < y/h < 85. The averaged data in Figs. 1 and 2 exhibit good overall symmetry
between the channel walls.

III. THE k - c TRANSPORT EQUATIONS

Exact Transport Equations

The two equation k - e model for turbulent flow requires transport equations for
the turbulence kinetic energy, k, and for E, the rate of dissipation of turbulence energy.
The exact equation for the transport of turbulence kinetic energy is obtained from the
sum of the transport equations for the three normal Reynolds stresses. With a slight
rearrangement, the k transport equation in indicial notation as given by Hinze (1975)
is,
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(1) (2) (3)

Dk U--aui a -\ a (-P-

YD = - Uj- 7 -- yujk1 ) -h yui-)

+Va +ai +  (I)jai x
7x Ox-3  ax, Oxl Ox Oxau

(4) (5)

where k' is half the sum of the normal stresses and k is its averaged value. It should
be noted here that for the channel flow simulations the mean flow is homogeneous in
the horizontal coordinate directions so that UT = f(X 2 ) and U2 = U3 = 0. Because
of symmetry with respect to planes normal to the spanwise direction, all correlations
involving u 3 and uneven derivatives with respect to x 3 are zero.

The terms on the right hand side correspond to (1) production of turbulence kinetic
energy, (2) transport of turbulence energy (3) transport of the pressure fluctuations,
(4) viscous diffusion and (5) viscous dissipation. For an incompressible fluid, terms (4)
and (5) can be written in the alternate form,

(4) (5)
Dk 02 Ou, Ou,

= (1) + (2) + (3) + v, k -v-----. (2)

Dt Ox 19x, 9 Ox Ox

While the sum of terms (4) and (5) is the same in Eqs. 1 and 2, the individual
terms are not equivalent. Term (5) in Eq. 1 is the full dissipation term and term (5)
in Eq. 2 is the dissipation only in homogeneous turbulence. It is the latter term which
is modeled in the k - E transport equations.

The exact transport equation for the dissipation rate term is derived from the
unsteady Navier-Stokes equations. We use the form given by Hanjali6 and Launder
(1976),

(1) (2) (3) (4) (5)

Df Oui Ou, auk 2 1 92u, )2 - i +2vak j - 19
DT =- e2, Ox , \," O - ,p, Ox, Ok

I'U Ou, ku Ou, au, 10U,9U O u 2
u2v -+2vU (3)
2 jOx, Ox, Ox. OXk Oxk Ox, Ox&Ox()

(6) (7) (8)
where



cOu, 8u, , Du, 9u,
E= -- and F =

j Ox j axj axj"

The first term on the right hand side of Eq. 3 represents turbulent production of f.
Term (2) represents dissipation of E. The terms in the first pair of braces, terms (3), (4)
and (5), represent turbulent transport, pressure transport and viscous diffusion. The
last three terms, terms (6), (7) and (8), are production terms.

The individual terms in Eqs. 1-3 have been calculated from the DNS data of HHL.
Products such as uiuj are formed at each grid point in the domain, the correlation is
then averaged over the xi - X3 plane giving a profile in x2. The x2 profiles are then
averaged over the 33 realizations in the saved data sets. In forming the averages of the
terms, we make use of the symmetry (in the mean) of the channel flow about the center
line. In the following figures, we use the wall normal distance y+ with origin at the
wall whereas in the preceding figures we used y/h with origin at the channel center.

Figure 3 shows the sums of terms (4) and (5) in Eqs. 1 and 2. The agreement
between the sums of these terms in nearly exact, an indication of the fidelity of the
simulation in maintaining a divergence free flow. Comparison of terms (5) in the two
equations shows only slightly greater differences than is seen in the sums of the terms.
The individual terms in Eq. 2 are shown in Fig. 4. These data agree very well with the
data presented by Mansour, Kim and Moin (1988), hereinafter referred to as MKM,
with the differences (small) being attributable primarily to the differences in resolution
of the two calculations and to a lesser extent to the differences in Reynolds numbers.
Both HHL and KMM make extensive comparisons with experimental data and find
very good agreement, and such comparisons are not included herein. The interested
reader may refer to those sources.

As seen from Fig. 5, across most of the channel, the principal contribution to the
transport of c comes from terms (1) and (2). Near the wall (for y+ < 25) terms (6)
and (7) become significant contributors and very near the wall (for y+ < 3), term (5)
becomes a major contributor. At the wall, it is term (5) which balances term (2).
The other three terms ((3), (4) and (8)) contribute very little to the transport of 1 in
the channel and are not shown in this figure. Except for the small differences due to
resolution and Reynolds number differences, these data agree nearly exactly with the
corresponding data of MKM.

For engineering calculations of turbulent flows, the k - E model is adequate for
many applications, but the terms involving the fluctuating velocity and pressure com-
ponents must be modeled. The models which are in use have been developed based on
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order of magnitude analysis of the transport equations and contain empirical constants
which have been determined from experimental data. The experimental data base is
incomplete because of difficulties of measuring some of the terms in the exact equations.
The data from the direct simulations permit a precise examination of the terms in the
transport equations and a new evaluation of the empirical constants in the turbulence
models.

Modeled Transport Equations

In modeling the terms of the k transport equations, terms (2) and (3) are taken
together as the diffusional flux of k and and assumed proportional to the gradient of
k. Rodi (1980) gives

ui k + - k (4)P k 'gxi

with ak an empirical diffusion constant. Term (4) of Eq. 2 is easily combined with
Eq. 4, and term (5) is simply E. The Reynolds stresses uiuj are modeled using the
Boussinesq eddy viscosity relation

¢ O-U i + ot _) kUij (5)

with 6,i the Kronecker delta. The eddy viscosity, turbulence kinetic energy and the
rate of dissipation of turbulence kinetic energy are related by

k2 ()

where C, is a constant. This expression for vt yields good agreement for flows such

as thin shear layers, but for turbulent flow next to a wall, CI, is not constant or a
wall damping function needs to be included. Patel, Rodi and Scheuerer (1985) use the
model

I k2  (7)

with the functional form of fm to be determined by comparison with experimental data.

The modeled form of the k transport equation then becomes

Dk 8 [7 v, ) (k P
Dt 0x, v + +)y-j - , (S)
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e

with

The steps in developing the model for the e transport equations are quite complex
and are not detailed here. Hanjali6 and Launder (1976) give the following form which
retains a direct Reynolds stress expression

De C2 k O(10)D = l T- -,2 C, 57- - -u, 10
Dt k X, 'Ej~~ OXij

They note that at a wall, the E2 /k term is unbounded, since E has a finite value at the
wall and k -- 0. They eliminate this difficulty by replacing E2 by ei where Z is defined
by

/ Dk'/ 2 )20 z

i= e - 2v1

and shc w that i/k approaches a finite value at the wall which ensures that ci/k is
bounded as Y+ - 0.

For the k - E model equations, the last term in Eq. 10 is written as a diffusion
term with U;Uik/e replaced by -vt/O,, where a, is an empirical dissipation constant.
This term is then combined with term (5) of Eq. 3. The modeled transport equation
for E takes the form

Dt O V + V) aI+ Cl-.- C,2 , (12)

with vj and P as given above. Commonly accepted values of the constants Ok. Or,, C,i
and C, 2 are 1.0, 1.3, 1.44 and 1.92, respectively.

For the channel, U2 and U3 are zero as are the 4crivatives of the averaged tur-
bulence variables in the xi and x3 directions. The modeled transport equations thus
reduce to the following form

Dk _9 8[ Vt\ ak1

Dt-x 2 [V + 7 + - (13)

and
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De _t (9E E
D' =+ + C,- 'P- C,2 (14)

Dt 5X2 Lk a, ) a2 kk

with

P a= Ma 1 (15)
01a2 aX2

and

-uu = aL a01  (16)

The eddy viscosity is given by Eq. 7. For thin shear flows C. is a constant and and
a value of 0.09 is typical. Likewise, for thin shear flows, f, = 1.0. For wall bounded
flows, fo, is the wall damping function and is usually chosen to approach 1.0 when the
flow is not influenced by the wall.

IV. EVALUATION OF THE k - E MODEL

One of the significant differences between the k - , turbulence model and models
which require additional transport equations is in the treatment on the Reynolds stress
terms, uuj. In the models using separate equations for the transport of the Reynolds
stresses, the 1uW terms are solved as unknown variables. In the k - E model, the
Reynolds stress terms are modeled using the eddy viscosity as given in Eqs. 7 and 16.
The accuracy of this model is then central in considering the accuracy of the k - e
model

If f, is taken to be 1.0, the k - c model corresponds to a high Reynolds number
model. Using the HHL data, we calculate the terms in each side of Eq. 16 with Vt given
by Eq. 7, C1, = 0.09 and f,, = 1.0. Figure 6 displays the two sides of Eq. 16 and we see
that the e.-jiation applies very well in the center of the channel but that in the near-
wall region the modeled term is much larger than the Reynolds stress computed from
the DNS data. -'-se d:-t, show that a damping term is required to bring the modeled
Reynolds str,"- ;t better agreement with that calculated from the simulation data.

A number 'A 'i.'Ul damping models have been proposed. One of the simplest (and
oldest) is that p:. ed by van Driest (1954) in which the damping depends only on
the law-of- hc-v.,., d coordinate, y+, and a constant of the turbulence, A+. In that
model, the appropriate damping function for the eddy viscosity is determined to be
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=l[I Iexp(y I/A+)]. (17)

This model has given excellent results for simple flows like flat plates, but has been
judged inadequate for more complex flows, such as those with recirculation and those
with pressure gradients. Many of the proposed alternatives to Eq. 17 depend upon a
Reynolds number of turbulence, either Ry . vrky+, or RT = k 2/c, and do not depend
solely upon y+ .

In the review of Patel, Rodi and Scheuerer (1985), eight different models for cal-
culation of near-wall turbulent flows are discussed. They found that the model of Lam
and Bremhorst (1981) provided the most reasonable wall damping for the experimental
data they considered. In that model, the damping function is given by,

fm,= [1 - exp(-0.0165Ry)] (1 + 20.5) (18)

Patel and his colleagues have since used the Lam-Bremhorst model for a number of
turbulent flow calculations with good results (e.g. Chen and Patel, 1987).

In the review of Patel, et al., C, = 0.09 was used for most of the models, including
the Lam-Bremhorst model. Since 0.09 is a commonly accepted value for C ,, we use
that value as the basis for comparison. Figure 7 shows the Reynolds shear stress as
calculated from the DNS data and as modeled by Eqs. 16 and 7 using C. = 0.09 and
f , from Eq. 18. With this wall damping the m.-deled and exact shears have about the
same peak value, but at different distances from the wall. However, the model gives
too low a value for y+ > 25.

Figures 8 and 9 show respectively the budgets for the terms in the modeled k and
e transport equations using the wall damping function in Eq. 18. For the k transport
equation, the diffusion term is very small in the center of the channel, then becomes
more significant for y+ < 30, peaks at y+ = 15, changes sign and is large at the
wall (due to the molecular viscosity). The production term is small in the center of
the channel, starts to increase for y+ < 50, peaks at a large value at y+ = 15 and
goes to zero at the wall. The dissipation term is larger (with opposite sign) than the
production term for 50 < y+ < 125, increases in magnitude as the wall is approached,
and reaches its minimum at the wall, where it is balanced by the diffusion term. Also
shown is the sum of the three modeled terms, and it is seen that there is significant
imbalance. The source of imbalance is the contribution of the production term. For
y+ < 25, the production term contributes too much, and, for y+ > 25, the production
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term contributes too little. For the c transport equation, the character of the terms is
like that of the terms of the k transport equation.

While good results have been obtained with the Lam-Bremhorst wall damping
model (Chen and Patel, 1987), the amount of imbalance in the modeled forms of the
transport equations suggests that the production term can be better modeled. We use
the HHL data to determine the form that f,, should take and compare that with the
form given by the Lam-Bremhorst model and other models. Equations 7 and 16 are
combined to give

f. = - [ , (19)

with CP, to be chosen so that f, goes to 1.0 at the channel center. We note that at the
wall k = 0 and at the channel center 49U1 /1x 2 = 0. Therefore, we limit evaluation of
Eq. 19 to the interval 0 < y+ < 125.

Figure 10 shows the distribution of fj,, across the half-channel, calculated from
Eq. 19 and with C,, = 0.115, a value that allows f, to approach 1.0 at the channel
center. Also shown is fj, from Eq. 18. For 10 < y+ < 30, the model gives too large a
value by up to about 70%. For y+ > 30, the model gives as much as one fourth too
low a value. We have examined how the values of the model change as the coefficients
of RT and Ry are changed. Since the second term of Eq. 18 is greater than one for all
values of RT, increases in the coefficient of R, can give values of fo greater than one
at the channel center. We find that the coefficients given in Eq. 18 seem to give the
best overall agreement between the model and fl, from the DNS data. What is needed
for better agreement with the HHL data is a model which gives larger values of f, for
the middle portion of the channel and lower values near the wall. We have looked at a
number of other wall damping models, including those considered by Patel, Rodi and
Scheuerer (1985), that of Jones and Launder (1972) and that of Kim (1988). While
we do not find good agreement between the models based on RT and/or Ry and f,
calculated from the HHL data, the Lam-Bremhorst model does give better agreement
with the HHL data than do the other models.

Figure 10 shows a characteristic of fo which is seldom noted. As calculated from
the DNS data using Eq. 19, f,. has a minimum value of 0.04 at y+ = 6 and f, then
increases toward the wall. Such a characteristic also appears in the f, which Patel,
et al. derived from experimental data and show in their Fig. 2. However, they do not
comment on this characteristic. We have reproduced as the full rectangles in Fig. 10
some of the data from their Fig. 2. The experimental data for f, are in good agreement
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with the HHL data and show a non-zero minimum at about y+ = 7. Expansion of the
terms of Eq. 19 in Taylor series about y+ - 0 shows that for small y+, ul = ay+ +... ,
uIu2 by + 3 +... , ? --+ c + dy + + ... and k' + ey+ 2 + .... Since near the wall
aui/0x2 is constant, the damping function in Eq. 19 must vary as g/y+ + h + ...
The result of this simple analysis is difficult to work with since it contains a singularity,
but it does indicate that fi, should have a minimum located off the wall. None of the
wall damping models vary as 1/y+ for small y+ and most go to zero instead of to a
non-zero minimum.

During the course of examining the wall damping models mentioned above, we
also compared the model of van Driest (1954) given in Eq. 17 with the DNS data,
and we find that the van Driest model agrees better with the HHL data than does
the Lam-Bremhorst model. Figure 11 shows fo from the HHL data and from Eq. 17
with A+ = 26 which is the commonly accepted value. We note that the model gives
too large a value in the interval 10 < y+ < 50 but that the shape of the distribution
of fm from the model and from the HHL data is similar. By introducing an effective
origin for y+, the modeled f. and that from the HHL data can be brought into very
close agreement. The use of an effective origin mimics the observed behavior that
fo possesses a minimum off the wall, however it does not produce a 1/yf+ variation.
Figure 12 shows a comparison between fm from the HHL data and from Eq. 17 with
y+ replaced by y+ - y+ and y+ = 6. With this addition of an effective origin, the
agreement between fl from the data and from the van Driest model is good over all
and is almost exact in the neighborhood of y+ = 25. Near the wall, the model gives a
value of zero at the effective origin, whereas the HHL data show a value of about 0.04.
The model can be brought into closer agreement with the HHL data by introducing a
minimum value, fo. The modified damping function is then given by

A. = JA + (1 - fA)(1 - exp[-(y+ - y+)/A+]). (20)

The introduction of f 0 shifts the curve upwards and yo needs to be correspondingly
increased to maintain agreement with the direct simulation data. Figure 13 shows a
comparison between f, from the HHL data and from Eq. 20 with y+ = 8 and fo = 0.04.
The agreement is seen to be very good. Also shown in this figure are the Patel, et al.
data presented in Fig. 10. The modifications to the van Driest wall damping function
are consistent with the experimental data and the direct simulation data.

With f, as shown in Fig. 13, and with C. = 0.115, the modeled shear agrees very
well with the exact shear as is shown in Fig. 14. Also shown in Fig. 14 is the shear
calculated with the unmodified van Driest damping function. With the unmodified
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damping function, C, is taken to be 0.09 for direct comparison with the modeled shear
calculated with the Lam-Bremhorst model shown in Fig. 7. That comparison shows
that the van Driest model gives a greater shear across all the channel. For y+ < 25,
the shear modeled with the Lam-Bremhorst damping function agrees better with the
exact shear than does that with the Driest damping function. However, for y+ > 25,
the van Driest damping function yields the better agreement. Overall, the van Driest
model gives better agreement with the exact shear from the HHL data than does the
Lam-Bremhorst model.

Use of the modified van Driest model for f, reduces the imbalance in the sum
of the modeled terms in the k transport equation. Figure 15 shows the variation of
the terms of the k transport equation modeled with the modified van Driest damping
function. Comparison with Fig. 8 shows that the imbalance is reduced by more than a
factor of two.

The DNS data also make it possible to evaluate the validity of one of the basic
assumptions of developing the k - E model: that the production and dissipation of
turbulence kinetic energy are in approximate balance. The production of turbulence
kinetic energy is calculated from the DNS data using the equation

P au(21)
Ox2

The variation across the channel of the ratio 1'/f is shown in Fig. 16. Except for
10 < y+ < 35, the ratio is less than one and is zero at the wall and the channel center.
At y+ = 15, P/f has its peak value of approximately 1.9. Averaged across the channel,
P/c is less than one.

Rodi (1980) reports the results of considering a number of turbulent flows for
which the ratio P/e was not unity. In earlier work, he had found that the experimental
data correlated with a function C. = f(P/E) whereby C,, varied inversely with P/e.
Denoting by C,,(y) the product of C, and fm, we show in Fig. 17 the values of C,,(y)
plotted vs. P/f with the omission of the 5 points nearest the wall. This shows a
distribution of C,(y) vs P/f much like that given by Rodi except that C,,(y) is constant
at about 0.11 for P/c < 0.7 instead of continuing to increase as P/E -+ 0.

V. SUMMARY AND CONCLUSIONS

In this report, we have performed an evaluation of the k - f turbulence model using
the direct numerical simulation data of Handler, Hendricks and Leighton for turbulent
channel flow. With the DNS data, we have evaluated the terms of the exact k - e
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transport equations and have found nearly exact agreement with the budget data pre-
sented by Mansour, Kim and Moin. Evaluation of the terms of the modeled transport
equations shows the necessity of using a wall damping function in the modeling of the
eddy viscosity. From the HHL direct simulation data, we have determined the shape
required for a damping function to obtain agreement between the modeled Reynolds
shear stress and that calculated from the DNS data. We have shown that the well ac-
cepted Lam-Bremhorst wall damping model gives reasonable agreement with the DNS
data.

We have also examined a number of other wall damping models. Those which
are functions of the turbulence Reynolds numbers generally agree less well with the
DNS function than does the Lam-Bremhorst model. We find that the standard van
Driest wall damping model gives better agreement with the DNS data than the Lam-
Bremhorst model. We further find that modifying the van Driest damping model to
include an effective origin gives very good agreement between the modeled shear and
the shear calculated from the HHL data.

VI. ACKNOWLEDGEMENTS

This work was supported by the Fluid Dynamics 6.1 Task Area of the Naval Re-
search Laboratory. The channel code used in the current work was originally developed
by Professor John McLaughlin (Clarkson University) and was modified by Steven Lyons
(University of Illinois). The code was also modified at the Naval Research Laboratory
to run efficiently on a Cray XMP 24.

VII. REFERENCES

Chen, H. C. and Patel, V. C., 1987, "Practical Near-Wall Turbulence Models for
Complex Flows Including Separation," AIAA-87-1300.

Jones, W. P. and Launder, B. E., 1972, "The Prediction of Laminarization with a Two-
Equation Model of Turbulence," International Journal of Heat and Mass Transfer,
Vol. 15, pp. 301-314.

Handler, R. A., Hendricks, E. W., and Leighton, R. 1., 1989, "Low Reynolds Number
Calculations of Turbulent Channel Flow: A General Discussion," NRL Memoran-
dum Report 6410, Naval Research Laboratory, Washington, D. C.

Hanjali6, K. and Launder, B. E., 1972, "A Reynolds stress model of turbulence and
its application to thin shear flows," Journal of Fluid Mechanics, Vol. 52, part 4,
pp. 609-638.

14



Hanjali6, K. and Launder, B. E., 1976, "Contribution towards a Reynolds-stress closure
for low-Reynolds-number turbulence." Journal of Fluid Mechanics, Vol. 74, part
4, pp. 593-610.

Hinze, J. 0., 1975, Turbulence, McGraw-Hill, New York.

Kim, J., Moin, P., and Moser, R., 1987, "Turbulence statistics in fully developed chan-
nel flow at low Reynolds number," Journal of Fluid Mechanics, Vol. 177, pp. 133-
166.

Kim, S.-W., 1988, "A Near-Wall Turbulence Model and its Application to Fully De-
veloped Turbulent Channel and Pipe Flows," NASA TM 101399 (ICOMP-88-20).

Lam, C. K. G. and Bremhorst, K. A., 1981, "Modified Form of the k - c-Model for
Predicting Wall Turbulence," Journal of Fluids Engineering, Vol. 103, pp. 456-460.

Launder, B. E., Reece, G. J., and Rodi, W., 1975, "Progress in the development of a
Reynolds-stress turbulence closure," Journal of Fluid Mechanics, Vol. 68, part 3,
pp. 537-566.

Mansour, N. N., Kim, J., and Moin, P., 1988, "Reynolds-stress and dissipation-rate
budgets in a turbulent channel flow," Journal of Fluid Mechanics, Vol. 194, pp. 15-
44.

Patel, V. C., Rodi, W., and Scheuerer, G., 1985, "Turbulent Models for Near-Wall
and Low Reynolds Number Flows: A Review," AIAA Journal, Vol. 23, No. 9,
pp. 1308-1319.

Rodi, W., 1980, Turbulence Models and their Application in Hydraulics, International
Association for Hydraulic Research, Delft, Netherlands.

van Driest, E. R., 1956, "On Turbulent Flow Near a Wall," Journal of the Aeronautical
Sciences, Vol. 23, No. 11, pp. 1007-1011.

15



20.0 2.0

18.0
1.8

16.0 UT

1.6
14.0

12.0 - 1.4
U, Prms

10.0 1
1.2

8.0
1.0

6.0

4.0 0.8

2.0 0.6
0.00

-125 -100 -75 -50 -25 0 25 50 75 100 125

y/h

Fig. I - Profiles of mean streamwise velocity, U1, and root mean square of pressure fluctuations, p', from the
direct simulation data of Handler, Hendricks and Leighton (i0989).
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Fig. 2 - Profiles of turbulence intensities, and Reynolds shear stress, u1 ,u2 , from the HHL data.
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Fig. 3 - Comparison of the sum of the viscous terms in the two forms of the exact k transport equation.

Terms (4) and (5) of Eq. 1 are shown as (+). Terms (4) and (5) of Eq. 2 are shown as (A).
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Fig. 4 - Budgets of the terms of the exact k transport equation for incompressible flow. Production term, P,
(+); transport of turbulence energy (*); transport of pressure fluctuations (0); viscous diffusion of k (A); and
homogeneous viscous dissipation, z, (]).
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Fig. 5 - Budgets of the principal terms of the exact f transport equation. Turbulent productioi, of f ( 5); dis-
sipation of c. (+); viscous diffusion (*), production terms; term (6), (0), and term (7), ( x).
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Fig. 6 - Comparison of the Reynolds shear stress, u1 ,u2 , calculated from the HHL data (0) and modeled by
the eddy viscosity in Eq. 16 (+).
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Fig. 7 - Comparison of the Reynolds shear stress, UI ,u 2 , calculated from the HHL data (0) and modeled by
the eddy viscosity with the Lam--Bremhorst wall damping function (+). C, = 0.09.
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Fig. 8 - Budgets of the terms in the modeled transport equation for turbulence kinetic energy using the Lam-
Bremhorst wall damping model. Dissipation term, E, (A); diffusion term (first term in Eq. 13) (+); production
term, P, (0); and sum of terms (0). C, = 0.09.
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Fig. 9 - Budgets of the terms in the modeled transport equation for the homogeneous dissipation function using
the Lam-Bremhorst wall damping model. Diffusion term (first term in Eq. 14) (+); production term, CjePik,
(0); Dissipation term, C,2e elk, (A); and sum of terms (0). C" = 0.09.
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Fig. 10 - Comparison of the wall damping function, f,, from the experimental data of Patel, et al. (0), calcu-
lated from the HHL data, Eq. 19, (0), and from the Lam-Bremhorst model, Eq. 18, (+). For HHL data,
C' = 0.115 to give f, = 1.0 at channel center.
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Fig. 11 - Comparison of the wall damping function, f,, calculated from the HHL data, Eq. 19 with
C" = 0. 115, (0), and from the standard van Driest model, Eq. 17, ()
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Fig. 12 - Comparison of the wall damping function, f,, calculated from the HHL data, Eq. 19 with
C" = 0.115, (0), and from the modified van Driest model with y+ = 6, (+).
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Fig. 13 - Comparison of the wall damping function, f,,, from the experimental data of Patel, et al. (0), calcu-
lated from the HHL data, Eq. 19 with C, = 0. 115, (0), and from the modified van Driest model, Eq. 20,
with y + 8 and fo 0.04, ()
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Fig. 14 - Comparison of Reynolds shear stress, u l ,u2 , calculated from the HHL data (0), modeled using the
modified van Driest wall damping model, Eq. 20, with fo = 0.04, y' = 8 and C, = 0.115, (*), and modeled
with the standard van Driest wall damping model, Eq. 17, with CM = 0.09,(+).
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Fig. 15 - Budgets of the terms in the modeled transport equation for turbulence kinetic energy using the modi-
fied van Driest wall damping model, Eq. 20, with fo = 0.04, y+ = 8 and C,, = 0.115. Dissipation term, c,
(4); diffusion term (first term in Eq. 13) (+); production term, P, (0); and sum of terms (C).
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Fig. 16 - The distribution across the channel of the ratio of the production of turbulence kinetic energy, P, to

the dissipation rate, t, as calculated from the direct simulation data.

31



0.12
0

0.10 0 0 0

0.08 0
C(Y)

0.06 0

0.04 0

0.02 0

0 .0 0 1 - ,0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

P/C

Fig. 17 - The eddy viscosity coefficient, C(y), as a function of the ratio of the production of turbulence kinetic
energy, P, to the dissipation rate, e.
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